
 | Fine-tuned encoder

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

waveforms X . The codebook CpFTq is obtained with the k-
means algorithm applied on the output of g

pFTq
1 for a train set.

Given an input sequence X , the teacher module g
pFTq
1 computes

a Mel-spectrogram vector for each frame, which is assigned to
its closest centroid in CpFTq (as in (5)). The student softmax-
based g

pFTq
2 module of [6] is also re-introduced, to predict a

sequence Ĉ of quantised Mel-spectrogram vectors in CpFTq:

ĉl “ g
pFTq
2 pzlq “ argmax

c

¨

˝
exp

´
sim

`
Azl,e

pFTq
c

˘
{⌧

¯

∞CardpCpFTqq
c1“1

exp
´

sim
`
Azl,e

pFTq
c1

˘
{⌧

¯

˛

‚,

(15)
where A is a linear projection, simpa, bq is the cosine similarity
between a and b, e

pFTq
c is a learnt embedding of codeword

c P CpFTq, and ⌧ is the logit scale factor [6], set to 0.1.
Following HuBERT training described in Section III-B, g

pFTq
1

and f1 are fixed, and f2 and g
pFTq
2 are updated to minimise

the cross-entropy loss between the predicted indices of Mel-
spectrogram vectors ĉl (softmax output of 15) and the indices
of the quantised Mel-spectrogram vectors cl P CpFTq, while
part of the Y sequence is randomly masked across batches.
At inference, the sequence Ĉ of quantised Mel-spectrogram
vectors is directly fed to a pre-trained vanilla HiFi-GAN.

By noting again by ˚ the modules that are trained, the full
IFT framework can be summarized as follows. In the informed
case, we have:

X̂tPrt1,t2s “ IFT
`
X´rt1,t2s

˘

“ d
`

g
pFTq˚
2 ˝ f

˚
2 ˝ fmpl1,l2q ˝ f1pX´rt1,t2sq

(
lPrl1,l2s

˘
,

(16)

and in the blind case, we have:

X̂ “ IFT
`
X´rt1,t2s

˘

“ d ˝ g
pFTq˚
2 ˝ f

˚
2 ˝ f1

`
X´rt1,t2s

˘
. (17)

IV. EXPERIMENTAL SET-UP

A. Datasets
a) In-domain train/test sets: We conducted experiments

on both LJ Speech [77] and VCTK [78] datasets. LJ Speech is
an English corpus containing 13 100 short audio clips recorded
by a single female speaker for a total length of approximately
24 h. We isolated 12 950 clips as the training/validation set,
the remaining 150 clips being used for test. VCTK includes
a set of 43 859 audio clips recorded by 109 English speakers
balanced in gender and with various accents, for a total of
approximately 44 h. We used 41 747 clips from 105 speakers
for training and 389 clips from 4 speakers for test. Importantly,
we carefully designed the partitioning of the VCTK dataset to
have no overlap between the training and test sets in terms of
sentences and speakers. In other words, the proposed models
have to generalise to both new speakers and new linguistic
content.

b) Out-of-domain test sets: We also considered two
supplementary datasets for evaluating the extrapolation capa-
bilities of our models to out-of-domain data. First, we designed
noisy versions of our LJ Speech and VCTK test sets with the
same number of utterances as described before (i.e., 150 for

LJ Speech and 389 for VCTK). On each clip, we then applied
either a white noise or a crowd noise with three Signal-to-
Noise Ratio (SNR) levels (20, 10 and 0 dB) for a total of six
noise-corrupted signals per utterance. Those two new test sets
account for a total of 900 utterances for LJ Speech and 2334

for VCTK.
Second, we used a subset of the Expresso [79] dataset, a

multispeaker expressive speech dataset covering seven differ-
ent speaking styles uttered by four different speakers. Follow-
ing the recommendation from the authors, our test set includes
588 utterances, with 147 clips per speaker and 84 clips per
speaking style.

B. Implementation details

a) SSL encoder HuBERT: For the two proposed inpaint-
ing frameworks IPT and IFT, we used the HuBERT-large model
hubert-large-ls960-ft, publicly available on Hugging Face (see
our repository). This model is a fine-tuned version of hubert-
large-ll60k, the latter being initially trained on the Libri-Light
dataset [80], including 60 000 h of speech data from over 7000

speakers. The fine-tuning was done on the LibriSpeech dataset,
containing 960 h of speech data from over 2484 speakers. To
the best of our knowledge, the LJ Speech and VCTK datasets
used in the present study are not included in LibriSpeech.
However, since LJ Speech is extracted from the LibriVox5

dataset, there might be a slight overlap with the very large
Libri-Light dataset (also based on LibriVox). However, this
overlap is approximately 0.0004% (24 vs. 60 000 hours) and
thus remains very limited.

In the HuBERT model used in this study, the speech input
is expected to be sampled at 16 kHz. The prenet window size
and hop size are 400 and 320 samples (i.e., 25 and 20 ms),
respectively. The output Z has dimension 768.

b) Adapting the neural vocoder (IPT): For this approach,
we used the implementation of the speech encoder-decoder
framework proposed by [12]. Dedicated codebooks CpPTq

were computed using the LJ Speech (resp. VCTK) dataset,
considering a training subset of 21 h (resp. 36 h) and 100

(resp. 500) clusters. Recall that for this model g
pPTq
2 is not

trained, i.e., for any representation Z of a masked input
sequence X´rt1,t2s, g

pPTq
2 retrieves the closest sequence of

vectors Ĉ “ tĉ1, . . . , ĉLu from CpPTq. HiFi-GAN is then
trained from scratch to generate X̂ from Ĉ. Note that contrary
to [12], we did not use a fundamental frequency (fo) encoder
as an input in parallel to the Ĉ sequence, in order to avoid
the explicit prediction of the fo of the corrupted segment.
For the multi-speaker configuration (i.e., model trained on
the VCTK dataset), a speaker embedding extracted using the
speaker identification model proposed in [81] was used as an
additional conditioning vector. Here, we trained this model
on the same VCTK training subset than for the codebook
computation (36 h). Both the HiFi-GAN vocoder and the
speaker identification model were trained with the Adam
optimiser [82] over 200 epochs, with a batch size of 32 and a
learning rate of 2 ˆ 10

´4.

5https://librivox.org

Inpainting process

HiFi-GANHuBERT
X f1 Y f2 Z g2 Ĉ d X̂

Neural
Vocoder

SSL
Encoder

SSL
Encoder

Neural
Vocoder

Adaptation

Adaptation

CNN
layers

Transformer
blocks

Quantised
representation in

Transposed
convolutions

Codebook

Masked
speech

Inpainted
speech

Latent
representation

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Fig. 1. Inpainting with HuBERT and HiFiGAN.

More specifically, HuBERT considers low-resolution Mel-
spectrograms, and we must find a way to reconstruct the time-
domain signal waveform. Neural vocoders such as WaveNet
[21] or HiFiGAN [22] have shown to be more efficient
than phase reconstruction algorithms, at least for speech,
in particular when manipulating low-dimensional Mel-scaled
spectrograms [23]. We thus propose to combine HuBERT
with a neural vocoder, in the present case HiFiGAN, for
audio/speech inpainting. We propose two ways to do that,
either by fine-tuning the neural vocoder on the pre-trained
SSL output, or by fine-tuning the pre-trained SSL on the
neural vocoder input. The first approach is inspired by the
low-bitrate neural speech coding approach proposed in [24].
The second one involves to fine-tune HuBERT to predict
directly a Mel-scaled magnitude spectrogram for the masked
part, which is then converted to a time-domain signal by
HiFiGAN. We assess the performance of these two methods
in both single-speaker and more challenging multi-speaker
settings. Our experimental results shows that the proposed
SSL-based approach to speech inpainting yields comparable,
if not superior, results compared to supervised methods. We
provide complete source code and pre-trained models for both
proposed architectures.

II. METHOD

A. Problem formulation

Following the notations used in [13], let us denote X =

{x1, . . . , xT } a sequence of speech samples of length T (i.e.,
a waveform), and X�[t1,t2] the sequence in which the segment
Xt2[t1,t2] = {xt1 , xt1+1, . . . , xt2} is masked, i.e. replaced
with zeros. In the following of this paper, we will address non-
causal inpainting, i.e. the inpainting function I has access to
past and future unmasked parts of the input signal. We will
consider both the informed inpainting paradigm, i.e. when the
mask position is known, and the blind one, i.e., when the
mask position is not known. The informed inpainting process
consists in predicting only the missing segment from the
masked signal, i.e. X̂t2[t1,t2] = I

�
X�[t1,t2]

�
while keeping

the original signal on the unmasked parts, i.e., X̂t/2[t1,t2] =

Xt/2[t1,t2]. For the blind paradigm, the entire input signal is
processed by the inpainting process with X̂ = I

�
X�[t1,t2]

�
.

B. Masking, the core pretext task of HuBERT

HuBERT is an encoder that converts an audio signal X to
a latent representation Z = {z1, . . . , zL} of size L

1:

yl = f1

�
X[lH�u,lH+u[

�
, (1)

Z = f2 (Y) , with Y = {y1, . . . , yL} (2)

where f1, sometimes referred to as the prenet, is a stack
of CNNs of span 2u samples and hop size H , and f2 is a
stack of transformer encoder blocks. During training, part of
the CNN-encoded sequence Y is randomly masked to predict
the fully-encoded sequence Z, i.e. Y is replaced by Y�[l1,l2]

in (2), which amounts to masking the corresponding samples
in X . The training objective of HuBERT is the prediction of
a quantised representation of the speech signal, with the help
of two auxiliary modules, g1 and g2, which act as teacher
and student models, respectively. The teacher module g1 maps
the audio signal to a given representation (e.g., MFCC in the
first vanilla HuBERT training iteration). Before training, a
codebook C is obtained by passing part of the training set
through g1 and applying a k-means algorithm on the output.
During training, the teacher module g1 extracts a quantised
sequence C = {c1, . . . , cL} from each waveform input, with
a span of 2w samples and window shift H:

cl = VQC
�
g1

�
X[lH�w,lH+w[

��
(3)

where VQC stands for the quantisation of the g1 output on the
codebook C. The student module g2 aims at predicting this
quantised sequence from the encoder output Z. This writes:

ĉl = g2 (zl) = g2 � f2 � f1
�
X[lH�u,lH+u[

�
, (4)

and Ĉ = {ĉ1, . . . , ĉL} is expected to be as close as possible
to C. In practice, g2 is implemented with a softmax function
involving a (learned) linear projection of zl over ĉl. During
HuBERT training, g1 is fixed, and f1, f2 and g2 are updated
to minimise the distance between Ĉ and C while part of the
Y sequence is randomly masked across batches.

To the best of our knowledge, in the many different uses of
HuBERT reported in the literature, the masking is only used
for training and is never kept during inference. In other words,
when using the speech representation Z in downstream tasks
(mostly classification tasks), the input signal X is generally
not masked. In addition, g1 and g2 are discarded, and a newly
trained module dedicated to the downstream task is often
appended to f2. However, we hypothesise that at inference,
HuBERT should be able to encode a masked input X�[t1,t2],
since this is equivalent to masking part of the Y sequence in
the pretext training task. In other words, HuBERT is implicitly
an inpainting encoder, even if, to our knowledge, it has not
been considered as such in the literature.

Starting from the above consideration and formulations, by
keeping g1 and g2 that are dedicated to the mask-based training

1In the following equations, when chaining several functions, we do not
differentiate if a function applies to a vector of a sequence (at frame l) or
to the complete sequence. This abuse of notation is to notably simplify the
presentation, without affecting the principle of the proposed methodology.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Fig. 1. Inpainting with HuBERT and HiFiGAN.

More specifically, HuBERT considers low-resolution Mel-
spectrograms, and we must find a way to reconstruct the time-
domain signal waveform. Neural vocoders such as WaveNet
[21] or HiFiGAN [22] have shown to be more efficient
than phase reconstruction algorithms, at least for speech,
in particular when manipulating low-dimensional Mel-scaled
spectrograms [23]. We thus propose to combine HuBERT
with a neural vocoder, in the present case HiFiGAN, for
audio/speech inpainting. We propose two ways to do that,
either by fine-tuning the neural vocoder on the pre-trained
SSL output, or by fine-tuning the pre-trained SSL on the
neural vocoder input. The first approach is inspired by the
low-bitrate neural speech coding approach proposed in [24].
The second one involves to fine-tune HuBERT to predict
directly a Mel-scaled magnitude spectrogram for the masked
part, which is then converted to a time-domain signal by
HiFiGAN. We assess the performance of these two methods
in both single-speaker and more challenging multi-speaker
settings. Our experimental results shows that the proposed
SSL-based approach to speech inpainting yields comparable,
if not superior, results compared to supervised methods. We
provide complete source code and pre-trained models for both
proposed architectures.

II. METHOD

A. Problem formulation

Following the notations used in [13], let us denote X =

{x1, . . . , xT } a sequence of speech samples of length T (i.e.,
a waveform), and X�[t1,t2] the sequence in which the segment
Xt2[t1,t2] = {xt1 , xt1+1, . . . , xt2} is masked, i.e. replaced
with zeros. In the following of this paper, we will address non-
causal inpainting, i.e. the inpainting function I has access to
past and future unmasked parts of the input signal. We will
consider both the informed inpainting paradigm, i.e. when the
mask position is known, and the blind one, i.e., when the
mask position is not known. The informed inpainting process
consists in predicting only the missing segment from the
masked signal, i.e. X̂t2[t1,t2] = I

�
X�[t1,t2]

�
while keeping

the original signal on the unmasked parts, i.e., X̂t/2[t1,t2] =

Xt/2[t1,t2]. For the blind paradigm, the entire input signal is
processed by the inpainting process with X̂ = I

�
X�[t1,t2]

�
.

B. Masking, the core pretext task of HuBERT

HuBERT is an encoder that converts an audio signal X to
a latent representation Z = {z1, . . . , zL} of size L

1:

yl = f1

�
X[lH�u,lH+u[

�
, (1)

Z = f2 (Y) , with Y = {y1, . . . , yL} (2)

where f1, sometimes referred to as the prenet, is a stack
of CNNs of span 2u samples and hop size H , and f2 is a
stack of transformer encoder blocks. During training, part of
the CNN-encoded sequence Y is randomly masked to predict
the fully-encoded sequence Z, i.e. Y is replaced by Y�[l1,l2]

in (2), which amounts to masking the corresponding samples
in X . The training objective of HuBERT is the prediction of
a quantised representation of the speech signal, with the help
of two auxiliary modules, g1 and g2, which act as teacher
and student models, respectively. The teacher module g1 maps
the audio signal to a given representation (e.g., MFCC in the
first vanilla HuBERT training iteration). Before training, a
codebook C is obtained by passing part of the training set
through g1 and applying a k-means algorithm on the output.
During training, the teacher module g1 extracts a quantised
sequence C = {c1, . . . , cL} from each waveform input, with
a span of 2w samples and window shift H:

cl = VQC
�
g1

�
X[lH�w,lH+w[

��
(3)

where VQC stands for the quantisation of the g1 output on the
codebook C. The student module g2 aims at predicting this
quantised sequence from the encoder output Z. This writes:

ĉl = g2 (zl) = g2 � f2 � f1
�
X[lH�u,lH+u[

�
, (4)

and Ĉ = {ĉ1, . . . , ĉL} is expected to be as close as possible
to C. In practice, g2 is implemented with a softmax function
involving a (learned) linear projection of zl over ĉl. During
HuBERT training, g1 is fixed, and f1, f2 and g2 are updated
to minimise the distance between Ĉ and C while part of the
Y sequence is randomly masked across batches.

To the best of our knowledge, in the many different uses of
HuBERT reported in the literature, the masking is only used
for training and is never kept during inference. In other words,
when using the speech representation Z in downstream tasks
(mostly classification tasks), the input signal X is generally
not masked. In addition, g1 and g2 are discarded, and a newly
trained module dedicated to the downstream task is often
appended to f2. However, we hypothesise that at inference,
HuBERT should be able to encode a masked input X�[t1,t2],
since this is equivalent to masking part of the Y sequence in
the pretext training task. In other words, HuBERT is implicitly
an inpainting encoder, even if, to our knowledge, it has not
been considered as such in the literature.

Starting from the above consideration and formulations, by
keeping g1 and g2 that are dedicated to the mask-based training

1In the following equations, when chaining several functions, we do not
differentiate if a function applies to a vector of a sequence (at frame l) or
to the complete sequence. This abuse of notation is to notably simplify the
presentation, without affecting the principle of the proposed methodology.

Trained models

Frozen models

g1 Clustering

Train set
 | Pre-trained encoder

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

pl1, l2q (see the left part of Fig. 2c). In the blind case, the
location of YlPrl1,l2s is unknown and we cannot apply the
mask (see the left part of Fig. 2d). In this case, we thus
stick to (4) at inference/inpainting time and have to accept
that HuBERT functions under a train/inference mismatch. The
blind inpainting configuration can be seen as a way to evaluate
HuBERT’s ability to infer an accurate speech representation
from the surrounding context of the missing/corrupted speech
information, even when this missing/corrupted speech infor-
mation is not explicitly indicated by a mask embedding vector.

Note that, as mentioned at the end of Section III-B, in the
various uses of HuBERT reported in the literature, masking is
applied only during training and is never used during infer-
ence. This is because, when using the speech representation
Z in downstream tasks, the input signal X is generally not
corrupted. To the best of our knowledge, the speech inpainting
pipeline considered in this paper represents the first instance
where the masking process, which is central to HuBERT’s
training pretext task, is explicitly used at inference time (in
the informed configuration).

D. Combining HuBERT encoder with HiFi-GAN decoder

In this subsection, we present in detail how we combined
the HuBERT encoder with the HiFi-GAN decoder. To this end,
we first recall that during training on masked Y sequences,
HuBERT predicts Z via a quantised representation (see (9)).
Therefore, to carefully match the pretext training task during
inpainting, we retain the auxiliary module g2, which trans-
forms Z into the quantised sequence Ĉ. Ĉ is then used as
input to the HiFi-GAN decoder (denoted d) (see Fig. 1 and
2). In the informed case, we use only the subsequence ĈlPrl1,l2s
(corresponding to the masked portion of Y) to reconstruct the
missing speech segment. The latter is then combined with the
uncorrupted parts of the input signal (see Fig. 2c). This can
be expressed as:4

#
X̂tPrt1,t2s “ dpĈlPrl1,l2sq
X̂tRrt1,t2s “ XtRrt1,t2s,

(10)

where again, rl1, l2s is the frame interval corresponding to the
corrupted segment of input signal sample interval rt1, t2s. In
the blind case, we simply have (see Fig. 2d):

X̂ “ dpĈq. (11)

In the following, we detail how to adapt g2 to interface
HuBERT with HiFi-GAN, and how to accordingly configure
g1 and the codebook C to train g2. We propose two frameworks
for this purpose: (i) decoder adaptation (PT), where the HiFi-
GAN decoder is trained to fit a frozen pre-trained HuBERT
encoder, and (ii) encoder adaptation (FT), where we adapt and
fine-tune the HuBERT encoder output to fit the standard frozen
HiFi-GAN decoder. These methods are illustrated in Fig. 1 and
detailed below.

4Again, for simplicity of presentation, we omit the cross-fade operation in
this equation.

1) Decoder adaptation: In this first approach, we use a
pre-trained HuBERT model and keep it frozen. To adapt
the HiFi-GAN decoder to the frozen pre-trained HuBERT,
we follow the two-step adaptation process proposed in the
GSLM framework [12]. In the first step, we directly use Z

as the new signal representation (i.e., g
pPTq
1 is identical to the

frozen pre-trained HuBERT f2 ˝f1). A new codebook CpPTq is
obtained by running the k-means algorithm on the Z sequences
derived from a subset of the pre-training dataset. g

pPTq
2 is then

simply the quantisation on CpPTq of the encoded sequence Z

corresponding to any corrupted input sequence X´rt1,t2s:

Ĉ “ g
pPTq
2 pZq “ VQCpPTq pZq. (12)

In the second step, and similarly to [12], we trained a
HiFi-GAN model d

pPTq from scratch to reconstruct the speech
waveform from HuBERT’s output. Specifically, the decoder
takes the index of each ĉl in the codebook CpPTq as input and
learns a look-up table of embedding vectors, which are then
fed into the standard HiFi-GAN architecture.

By denoting with ˚ the modules that are trained, the full
inpainting pipeline IPT can be summarized as follows. In the
informed case, we have:

X̂tPrt1,t2s “ IPT
`
X´rt1,t2s

˘

“ d
pPTq˚`

g
pPTq
2 ˝ f2 ˝ fmpl1,l2q ˝ f1pX´rt1,t2sq

(
lPrl1,l2s

˘
,

(13)

and in the blind case, we have:

X̂ “ IPT
`
X´rt1,t2s

˘

“ d
pPTq˚ ˝ g

pPTq
2 ˝ f2 ˝ f1

`
X´rt1,t2s

˘
. (14)

2) Encoder adaptation: In this second approach, we use
the standard (vanilla) HiFi-GAN decoder, which takes a Mel-
spectrogram as input and remains frozen, while we adapt
HuBERT. To fully understand our adaptation of HuBERT and
the motivation behind it, we must revisit the conventional
HuBERT training process, briefly outlined in Section III-B.

As described in details in [6], after HuBERT is initially
pre-trained on a masking pretext task using g1 and g2, it is
subsequently fine-tuned on an ASR task. In this stage, g1 and
g2 are discarded, and f2 is extended with a softmax layer for
phoneme classification, and fine-tuned using a labelled speech
dataset. While this ASR-oriented supervised fine-tuning en-
ables the encoder to extract linguistic information effectively,
it may do so at the expense of supra-segmental information—
such as intonation—which is critical for the speech inpainting
task. In our FT approach to inpainting, we aim to leverage the
powerful pre-trained HuBERT while mitigating the effects of
its ASR-specific fine-tuning. Simultaneously, we aim to adapt
HuBERT’s output to align with HiFi-GAN’s Mel-spectrogram
input representation. To achieve this, we reintroduce g1 and
g2 and perform a new round of training using the masking
pretext task on a reasonable amount of data. In this iteration,
the speech representation is replaced by the Mel-spectrogram.
Altogether, this adaptation process can be seen an inpainting-
oriented fine-tuning.

In a few more details, we define g
pFTq
1 as the extraction of

Mel-spectrogram vectors from (frames of 2w samples of) the

